Wide-area ground motion monitoring is nowadays achievable via advanced Differential Interferometry SAR (A-DInSAR) techniques which benefit from the availability of large sets of Copernicus Sentinel-1 images. However, it is of primary importance to implement automated solutions aimed at performing integrated analysis of large amounts of interferometric data. To effectively detect high-displacement areas and classify ground motion sources, here we explore the feasibility of a machine learning-based approach. This is achieved by applying the random forest (RF) technique to large-scale deformation maps spanning 2015-2018. Focusing on the northern part of Italy, we train the model to identify landslide, subsidence, and mining-related ground motion with which to construct a balanced training dataset. The presence of noisy signals and other sources of deformation is also tackled within the model construction. The proposed approach relies on the use of explanatory variables extracted from the A-DInSAR datasets and from freely accessible informative layers such as Digital Elevation Model (DEM), land cover maps, and geohazard inventories. In general, the model performance is very promising as we achieved an overall accuracy of 0.97, a true positive rate of 0.94 and an F1-Score of 0.93. The obtained outcomes demonstrate that such transferable and automated approach may constitute an asset for stakeholders in the framework of geohazards risk management.

Automated classification of A-DInSAR-based ground deformation by using random forest

Casagli N.;
2022-01-01

Abstract

Wide-area ground motion monitoring is nowadays achievable via advanced Differential Interferometry SAR (A-DInSAR) techniques which benefit from the availability of large sets of Copernicus Sentinel-1 images. However, it is of primary importance to implement automated solutions aimed at performing integrated analysis of large amounts of interferometric data. To effectively detect high-displacement areas and classify ground motion sources, here we explore the feasibility of a machine learning-based approach. This is achieved by applying the random forest (RF) technique to large-scale deformation maps spanning 2015-2018. Focusing on the northern part of Italy, we train the model to identify landslide, subsidence, and mining-related ground motion with which to construct a balanced training dataset. The presence of noisy signals and other sources of deformation is also tackled within the model construction. The proposed approach relies on the use of explanatory variables extracted from the A-DInSAR datasets and from freely accessible informative layers such as Digital Elevation Model (DEM), land cover maps, and geohazard inventories. In general, the model performance is very promising as we achieved an overall accuracy of 0.97, a true positive rate of 0.94 and an F1-Score of 0.93. The obtained outcomes demonstrate that such transferable and automated approach may constitute an asset for stakeholders in the framework of geohazards risk management.
2022
Ground deformation
A-DInSAR
machine learning
random forest
automated classification
File in questo prodotto:
File Dimensione Formato  
Automated classification of A-DInSAR-based ground deformation by using random forest.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/26415
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact