We analyse the reflection coefficient of an inhomogeneous plane wave incident on the thermally insulated surface of a thermo-poroelastic medium. The theory, which includes the classic Lord-Shulman (LS) and Green-Lindsay (GL) theories as well as a generalization of the LS model, predicts three inhomogeneous longitudinal waves and one transverse wave, described by potential functions specified by the propagation direction and inhomogeneity angle. The GL model can give a stronger P1-wave thermal attenuation and consequently a stronger velocity dispersion than the LS model. We investigate the influence of inhomogeneity angle, type of incident wave, frequency and surface boundary conditions. The generalized LS model exhibits increased P1-wave thermal attenuation with increasing Maxwell-Vernotte-Cattaneo relaxation time and consequently predicts more interference energy, irrespective if the surface is open or sealed. The inhomogeneity angle affects the energy partitions particularly near the grazing incidence, with a significant interference energy, which must be taken into account to satisfy the energy conservation. The thermal dispersion occurs at frequencies around the thermal relaxation peak, which moves to low frequencies when the conductivity increases.

Reflection of inhomogeneous plane waves at the surface of a thermo-poroelastic medium

Carcione J. M.;
2021-01-01

Abstract

We analyse the reflection coefficient of an inhomogeneous plane wave incident on the thermally insulated surface of a thermo-poroelastic medium. The theory, which includes the classic Lord-Shulman (LS) and Green-Lindsay (GL) theories as well as a generalization of the LS model, predicts three inhomogeneous longitudinal waves and one transverse wave, described by potential functions specified by the propagation direction and inhomogeneity angle. The GL model can give a stronger P1-wave thermal attenuation and consequently a stronger velocity dispersion than the LS model. We investigate the influence of inhomogeneity angle, type of incident wave, frequency and surface boundary conditions. The generalized LS model exhibits increased P1-wave thermal attenuation with increasing Maxwell-Vernotte-Cattaneo relaxation time and consequently predicts more interference energy, irrespective if the surface is open or sealed. The inhomogeneity angle affects the energy partitions particularly near the grazing incidence, with a significant interference energy, which must be taken into account to satisfy the energy conservation. The thermal dispersion occurs at frequencies around the thermal relaxation peak, which moves to low frequencies when the conductivity increases.
2021
Elasticity and anelasticity
Numerical modelling
Seismic attenuation
Wave propagation
File in questo prodotto:
File Dimensione Formato  
Reflection of inhomogeneous plane waves at the surface of a thermo-poroelastic medium.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/26554
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact