Understanding the controls on the distribution and magnitude of earthquakes is required for effective earthquake forecasting. We present a study that demonstrates that the distribution and size of earthquakes in Italy correlates with the steady state rate at which the Earth's crust moves. We use a new high-resolution horizontal strain rate (S) field determined from a very dense velocity field derived from the combination of Global Navigation Satellite System (GNSS) and satellite radar interferometry from two decades of observations. Through a statistical approach we study the correlation between the S and the magnitude of M >= 2.5 earthquakes that occurred in the same period of satellite observations. We found that the probability of earthquakes occurring is linked to S by a linear correlation, and more specifically the probability that a strong seismic event occurs doubles with the doubling of S. It also means that lower horizontal strain rate zone can have as large earthquakes as high horizontal strain rate zones, just with a reduced probability. The work demonstrates an independent and quantitative tool to spatially forecast seismicity.

Spatial forecasting of seismicity provided from Earth observation by space satellite technology

Casagli N.
2020-01-01

Abstract

Understanding the controls on the distribution and magnitude of earthquakes is required for effective earthquake forecasting. We present a study that demonstrates that the distribution and size of earthquakes in Italy correlates with the steady state rate at which the Earth's crust moves. We use a new high-resolution horizontal strain rate (S) field determined from a very dense velocity field derived from the combination of Global Navigation Satellite System (GNSS) and satellite radar interferometry from two decades of observations. Through a statistical approach we study the correlation between the S and the magnitude of M >= 2.5 earthquakes that occurred in the same period of satellite observations. We found that the probability of earthquakes occurring is linked to S by a linear correlation, and more specifically the probability that a strong seismic event occurs doubles with the doubling of S. It also means that lower horizontal strain rate zone can have as large earthquakes as high horizontal strain rate zones, just with a reduced probability. The work demonstrates an independent and quantitative tool to spatially forecast seismicity.
File in questo prodotto:
File Dimensione Formato  
Spatial forecasting of seismicity provided from Earth observation by space satellite technology.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/26565
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact