Unravelling the long-term evolution of the subglacial landscape of Antarctica is vital for understanding past ice sheet dynamics and stability, particularly in marine-based sectors of the ice sheet. Here we model the evolution of the bedrock topography beneath the Recovery catchment, a sector of the East Antarctic Ice Sheet characterized by fast-flowing ice streams that occupy overdeepened subglacial troughs. We use 3-D flexural models to quantify the effect of erosional unloading and mechanical unloading associated with motion on border faults in driving isostatic bedrock uplift of the Shackleton Range and Theron Mountains, which are flanked by the Recovery, Slessor, and Bailey ice streams. Inverse spectral (free-air admittance) and forward modeling of topography and gravity anomaly data allow us to constrain the effective elastic thickness of the lithosphere (Te) in the Shackleton Range region to ~20 km. Our models indicate that glacial erosion, and the associated isostatic rebound, ...
Uplift and tilting of the Shackleton Range in East Antarctica driven by glacial erosion and normal faulting
Ferraccioli F.;
2017-01-01
Abstract
Unravelling the long-term evolution of the subglacial landscape of Antarctica is vital for understanding past ice sheet dynamics and stability, particularly in marine-based sectors of the ice sheet. Here we model the evolution of the bedrock topography beneath the Recovery catchment, a sector of the East Antarctic Ice Sheet characterized by fast-flowing ice streams that occupy overdeepened subglacial troughs. We use 3-D flexural models to quantify the effect of erosional unloading and mechanical unloading associated with motion on border faults in driving isostatic bedrock uplift of the Shackleton Range and Theron Mountains, which are flanked by the Recovery, Slessor, and Bailey ice streams. Inverse spectral (free-air admittance) and forward modeling of topography and gravity anomaly data allow us to constrain the effective elastic thickness of the lithosphere (Te) in the Shackleton Range region to ~20 km. Our models indicate that glacial erosion, and the associated isostatic rebound, ...File | Dimensione | Formato | |
---|---|---|---|
Uplift and tilting of the Shackleton Range in East Antarctica driven by glacial erosion.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
5.53 MB
Formato
Adobe PDF
|
5.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.