Numerical simulations of earthquake damage on buildings require the definition of a reliable and appropriate seismic input (e.g., acceleration time histories and/or response spectra) in order to validate the accuracy of structural models in reproducing the observed level of damage – or no damage – associated with a particular earthquake. However, for sites that are not located close to active seismic stations, the definition of the ground motion that would have likely been recorded during an earthquake is not a trivial task. In this paper, we present the results of a case study where the seismic input at the sites of construction of three modern unreinforced masonry buildings caused by the Emilia May 29, 2012 M6.0 earthquake has been recreated following three different methods involving natural, artificial, and deconvolved accelerograms. The differences in the results are compared and contrasted highlighting the intrinsic limitations of the three different approaches while addressing an appropriate use of the seismic input when assessing the seismic performance of the three buildings.
An inter-disciplinary/multi-step approach in defining the input motion for the seismic analysis of masonry buildings struck by the May 29, 2012 M6.0 Emilia earthquake in Northern Italy
Zuccolo E.;
2021-01-01
Abstract
Numerical simulations of earthquake damage on buildings require the definition of a reliable and appropriate seismic input (e.g., acceleration time histories and/or response spectra) in order to validate the accuracy of structural models in reproducing the observed level of damage – or no damage – associated with a particular earthquake. However, for sites that are not located close to active seismic stations, the definition of the ground motion that would have likely been recorded during an earthquake is not a trivial task. In this paper, we present the results of a case study where the seismic input at the sites of construction of three modern unreinforced masonry buildings caused by the Emilia May 29, 2012 M6.0 earthquake has been recreated following three different methods involving natural, artificial, and deconvolved accelerograms. The differences in the results are compared and contrasted highlighting the intrinsic limitations of the three different approaches while addressing an appropriate use of the seismic input when assessing the seismic performance of the three buildings.File | Dimensione | Formato | |
---|---|---|---|
Fama_Author.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
3.92 MB
Formato
Adobe PDF
|
3.92 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.