We investigate the impact of considering a depth-dependent attenuation model on source parameters assessed through a spectral decomposition. In particular, we evaluate the effect of considering the hypocentral depth as an additional variable for the attenuation model, using as the target the tendency of the average stress drop to increase with depth, as observed in recent studies. We analyze the Fourier spectra of S-wave windows for about 1900 earthquakes with a magnitude above 2.5 recorded in the Ridgecrest region, southern California. Two different parameterizations of the attenuation term are implemented in the spectral decomposition, either as a function of the hypocentral distance alone or as a function of both epicentral distance and depth. The comparison of the spectral attenuation curves shows that, although the hypocentral model describes, on average, the range of values spanned by the attenuation curve for different depths, systematic differences with distance, depth, and fre...

Stress Drop Derived from Spectral Analysis Considering the Hypocentral Depth in the Attenuation Model: Application to the Ridgecrest Region, California

Picozzi M.;
2021-01-01

Abstract

We investigate the impact of considering a depth-dependent attenuation model on source parameters assessed through a spectral decomposition. In particular, we evaluate the effect of considering the hypocentral depth as an additional variable for the attenuation model, using as the target the tendency of the average stress drop to increase with depth, as observed in recent studies. We analyze the Fourier spectra of S-wave windows for about 1900 earthquakes with a magnitude above 2.5 recorded in the Ridgecrest region, southern California. Two different parameterizations of the attenuation term are implemented in the spectral decomposition, either as a function of the hypocentral distance alone or as a function of both epicentral distance and depth. The comparison of the spectral attenuation curves shows that, although the hypocentral model describes, on average, the range of values spanned by the attenuation curve for different depths, systematic differences with distance, depth, and fre...
File in questo prodotto:
File Dimensione Formato  
5007150.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Altro
Dimensione 3.99 MB
Formato Adobe PDF
3.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/27923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact