Multichannel seismic data collected off Wilkes Land (East Antarctica) reveal four main units that represent distinct phases in the evolution of the Cenozoic depositional environment. A Cretaceous synrift succession is overlain by hemipelagic and distal terrigenous sequences deposited during Phase 1. Sediment ridges and debris-flow deposits mark the transition to Phase 2. Unit 3 records the maximum sediment input from the continent and is characterized by the predominance of turbidite deposits. During Phase 4 the sediment supply from the continental margin was reduced, and draping and filling were the dominant processes on the continental rise. Unit 4 also contains the deposits of sediment wave fields and asymmetric channel-levee systems. These four units are a response to the Cenozoic evolution of the East Antarctic Ice Sheet. During Phase 1, small ice caps were formed in the innermost continental areas. The ice volume increased under temperate glacial regimes during Phases 2 and 3, when large volumes of melt-water production led to high sediment discharge to the continental rise. Change to a polar regime occurred through Phase 4, when a thick prograding wedge developed on the continental shelf and slope and the sediment transport to the rise diminished, producing general starvation conditions.

Sedimentary processes in the Wilkes Land margin: a record of the Cenozoic East Antarctic Ice Sheet evolution

Donda F.;De Santis L.;
2007-01-01

Abstract

Multichannel seismic data collected off Wilkes Land (East Antarctica) reveal four main units that represent distinct phases in the evolution of the Cenozoic depositional environment. A Cretaceous synrift succession is overlain by hemipelagic and distal terrigenous sequences deposited during Phase 1. Sediment ridges and debris-flow deposits mark the transition to Phase 2. Unit 3 records the maximum sediment input from the continent and is characterized by the predominance of turbidite deposits. During Phase 4 the sediment supply from the continental margin was reduced, and draping and filling were the dominant processes on the continental rise. Unit 4 also contains the deposits of sediment wave fields and asymmetric channel-levee systems. These four units are a response to the Cenozoic evolution of the East Antarctic Ice Sheet. During Phase 1, small ice caps were formed in the innermost continental areas. The ice volume increased under temperate glacial regimes during Phases 2 and 3, when large volumes of melt-water production led to high sediment discharge to the continental rise. Change to a polar regime occurred through Phase 4, when a thick prograding wedge developed on the continental shelf and slope and the sediment transport to the rise diminished, producing general starvation conditions.
File in questo prodotto:
File Dimensione Formato  
donda-et-al2007.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 4.87 MB
Formato Adobe PDF
4.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/2800
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 24
social impact