The maximum cross-correlation (MCC) technique is utilized to estimate the Adriatic Sea surface currents in regions characterized by strong horizontal temperature gradients using sequential pairs of sea surface temperature images from the Advanced Very High Resolution Radiometer data collected between September 2002 and December 2003. A variety of filtering techniques are used to eliminate erroneous MCCderived currents resulting in velocity and direction estimates that are spatially coherent in most of the thermal features observed. The results are compared quantitatively to the currents measured by surface drifters and high-frequency coastal radars, operating simultaneously in the vicinity of the thermal structures considered. These comparisons show that surface MCC-derived velocities agree with the typical circulation pattern generally observed in the Adriatic basin. The MCC velocity estimates agree well with collocated and cotemporal drifter and radar measurements averaged on the time interval separating the pairs of images. Since the MCC method provides only estimates of surface currents when thermal features exist and are not covered by clouds, it is proposed that this technique be used preferably with other measurements of surface circulation (high-frequency coastal radars, drifters, etc.) to construct more accurate, more frequent, and more extended circulation maps for scientific and operational purposes in marginal seas such as the Adriatic.

Estimation of Surface Currents in the Adriatic Sea from Sequential Infrared Satellite Images

Notarstefano G;Poulain P;Mauri E
2008

Abstract

The maximum cross-correlation (MCC) technique is utilized to estimate the Adriatic Sea surface currents in regions characterized by strong horizontal temperature gradients using sequential pairs of sea surface temperature images from the Advanced Very High Resolution Radiometer data collected between September 2002 and December 2003. A variety of filtering techniques are used to eliminate erroneous MCCderived currents resulting in velocity and direction estimates that are spatially coherent in most of the thermal features observed. The results are compared quantitatively to the currents measured by surface drifters and high-frequency coastal radars, operating simultaneously in the vicinity of the thermal structures considered. These comparisons show that surface MCC-derived velocities agree with the typical circulation pattern generally observed in the Adriatic basin. The MCC velocity estimates agree well with collocated and cotemporal drifter and radar measurements averaged on the time interval separating the pairs of images. Since the MCC method provides only estimates of surface currents when thermal features exist and are not covered by clouds, it is proposed that this technique be used preferably with other measurements of surface circulation (high-frequency coastal radars, drifters, etc.) to construct more accurate, more frequent, and more extended circulation maps for scientific and operational purposes in marginal seas such as the Adriatic.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.14083/2824
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact