Processes occurring at the grounding zone of marine terminating ice streams are crucial to marginal stability, influencing ice discharge over the grounding-line, and thereby regulating ice-sheet mass balance. We present new marine geophysical data sets over a ~30940 km area from a former ice-stream grounding zone in Storfjordrenna, a large cross-shelf trough in the western Barents Sea, south of Svalbard. Mapped ice-marginal landforms on the outer shelf include a large accumulation of grounding-zone deposits and a diverse population of iceberg ploughmarks. Published minimum ages of deglaciation in this region indicate that the deposits relate to the deglaciation of the Late Weichselian Storfjordrenna Ice Stream, a major outlet of the Barents Sea–Svalbard Ice Sheet. Sea-floor geomorphology records initial ice-stream retreat from the continental shelf break, and subsequent stabilization of the ice margin in outer-Storfjordrenna. Clustering of distinct iceberg ploughmark sets suggests locally diverse controls on iceberg calving, producing multi-keeled, tabular icebergs at the southern sector of the former ice margin, and deep-drafted, single-keeled icebergs in the northern sector. Retreat of the palaeo-ice stream from the continental shelf break was characterized by ice-margin break-up via large calving events, evidenced by intensive iceberg scouring on the outer shelf. The retreating ice margin stabilized in outer-Storfjordrenna, where the southern tip of Spitsbergen and underlying bedrock ridges provide lateral and basal pinning points. Ice-proximal fans on the western flank of the grounding-zone deposits document subglacial meltwater conduit and meltwater plume activity at the ice margin during deglaciation. Along the length of the former ice margin, key environmental parameters probably impacted ice-margin stability and grounding-zone deposition, and should be taken into consideration when reconstructing recent changes or predicting future changes to the margins of modern ice streams.

Ice-margin retreat and grounding-zone dynamics during initial deglaciation of the Storfjordrenna Ice Stream, western Barents Sea

Lucchi R. G.;
2020-01-01

Abstract

Processes occurring at the grounding zone of marine terminating ice streams are crucial to marginal stability, influencing ice discharge over the grounding-line, and thereby regulating ice-sheet mass balance. We present new marine geophysical data sets over a ~30940 km area from a former ice-stream grounding zone in Storfjordrenna, a large cross-shelf trough in the western Barents Sea, south of Svalbard. Mapped ice-marginal landforms on the outer shelf include a large accumulation of grounding-zone deposits and a diverse population of iceberg ploughmarks. Published minimum ages of deglaciation in this region indicate that the deposits relate to the deglaciation of the Late Weichselian Storfjordrenna Ice Stream, a major outlet of the Barents Sea–Svalbard Ice Sheet. Sea-floor geomorphology records initial ice-stream retreat from the continental shelf break, and subsequent stabilization of the ice margin in outer-Storfjordrenna. Clustering of distinct iceberg ploughmark sets suggests locally diverse controls on iceberg calving, producing multi-keeled, tabular icebergs at the southern sector of the former ice margin, and deep-drafted, single-keeled icebergs in the northern sector. Retreat of the palaeo-ice stream from the continental shelf break was characterized by ice-margin break-up via large calving events, evidenced by intensive iceberg scouring on the outer shelf. The retreating ice margin stabilized in outer-Storfjordrenna, where the southern tip of Spitsbergen and underlying bedrock ridges provide lateral and basal pinning points. Ice-proximal fans on the western flank of the grounding-zone deposits document subglacial meltwater conduit and meltwater plume activity at the ice margin during deglaciation. Along the length of the former ice margin, key environmental parameters probably impacted ice-margin stability and grounding-zone deposition, and should be taken into consideration when reconstructing recent changes or predicting future changes to the margins of modern ice streams.
File in questo prodotto:
File Dimensione Formato  
Shackleton&al2019_Boreas.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 685.75 kB
Formato Adobe PDF
685.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/2976
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact