Anchovies represent the largest world’s marine fish catches and the current threats on their populations impose a sustainable exploitment based on sound scientific information. In the European anchovy (Engraulis encrasicolus), the existence of several populations has been proposed but a global view is missing. Using a multidisciplinary approach, here we assessed the divergence among different ecotypes and its possible causes. SNPs have revealed two functionally distinct ecotypes overlapping in the Central Mediterranean, with one ecotype confined near the river estuaries. The same SNPs outliers also segregated two distinct populations in the near Atlantic, despite their large spatial distance. In addition, while most studies suggested that adaptation to low salinity is key to divergence, here we show that the offshore ecotype has higher environmental tolerance and an opportunistic feeding behaviour, as assessed by the study of environmental conditions, anchovy diet and trophic levels, and passive egg dispersal. These results provide insights into the anchovy evolutionary history, stressing the importance of behaviour in shaping ecotypes.

Anchovies represent the largest world’s marine fish catches and the current threats on their populations impose a sustainable exploitment based on sound scientific information. In the European anchovy (Engraulis encrasicolus), the existence of several populations has been proposed but a global view is missing. Using a multidisciplinary approach, here we assessed the divergence among different ecotypes and its possible causes. SNPs have revealed two functionally distinct ecotypes overlapping in the Central Mediterranean, with one ecotype confined near the river estuaries. The same SNPs outliers also segregated two distinct populations in the near Atlantic, despite their large spatial distance. In addition, while most studies suggested that adaptation to low salinity is key to divergence, here we show that the offshore ecotype has higher environmental tolerance and an opportunistic feeding behaviour, as assessed by the study of environmental conditions, anchovy diet and trophic levels, and passive egg dispersal. These results provide insights into the anchovy evolutionary history, stressing the importance of behaviour in shaping ecotypes.

Insights on the drivers of genetic divergence in the European anchovy

Borme D.;Tirelli V.;
2017-01-01

Abstract

Anchovies represent the largest world’s marine fish catches and the current threats on their populations impose a sustainable exploitment based on sound scientific information. In the European anchovy (Engraulis encrasicolus), the existence of several populations has been proposed but a global view is missing. Using a multidisciplinary approach, here we assessed the divergence among different ecotypes and its possible causes. SNPs have revealed two functionally distinct ecotypes overlapping in the Central Mediterranean, with one ecotype confined near the river estuaries. The same SNPs outliers also segregated two distinct populations in the near Atlantic, despite their large spatial distance. In addition, while most studies suggested that adaptation to low salinity is key to divergence, here we show that the offshore ecotype has higher environmental tolerance and an opportunistic feeding behaviour, as assessed by the study of environmental conditions, anchovy diet and trophic levels, and passive egg dispersal. These results provide insights into the anchovy evolutionary history, stressing the importance of behaviour in shaping ecotypes.
2017
Anchovies represent the largest world’s marine fish catches and the current threats on their populations impose a sustainable exploitment based on sound scientific information. In the European anchovy (Engraulis encrasicolus), the existence of several populations has been proposed but a global view is missing. Using a multidisciplinary approach, here we assessed the divergence among different ecotypes and its possible causes. SNPs have revealed two functionally distinct ecotypes overlapping in the Central Mediterranean, with one ecotype confined near the river estuaries. The same SNPs outliers also segregated two distinct populations in the near Atlantic, despite their large spatial distance. In addition, while most studies suggested that adaptation to low salinity is key to divergence, here we show that the offshore ecotype has higher environmental tolerance and an opportunistic feeding behaviour, as assessed by the study of environmental conditions, anchovy diet and trophic levels, and passive egg dispersal. These results provide insights into the anchovy evolutionary history, stressing the importance of behaviour in shaping ecotypes.
anchovy; population genetics; genetic divergence; ecotypes; evolutionary history
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/2998
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact