High pCO2 habitats and their populations provide an unparalleled opportunity to assess how species may survive under future ocean acidification conditions, and help to reveal the traits that confer tolerance. Here we utilize a unique CO2 vent system to study the effects of exposure to elevated pCO2 on trait-shifts observed throughout natural populations of Astroides calycularis, an azooxanthellate scleractinian coral endemic to the Mediterranean. Unexpected shifts in skeletal and growth patterns were found. Colonies shifted to a skeletal phenotype characterized by encrusting morphology, smaller size, reduced coenosarc tissue, fewer polyps, and less porous and denser skeletons at low pH. Interestingly, while individual polyps calcified more and extended faster at low pH, whole colonies found at low pH site calcified and extended their skeleton at the same rate as did those at ambient pH sites. Transcriptomic data revealed strong genetic differentiation among local populations of this wa...

Ocean acidification causes variable trait-shifts in a coral species

Urbini L.;De Vittor C.;Gambi M. C.
2020-01-01

Abstract

High pCO2 habitats and their populations provide an unparalleled opportunity to assess how species may survive under future ocean acidification conditions, and help to reveal the traits that confer tolerance. Here we utilize a unique CO2 vent system to study the effects of exposure to elevated pCO2 on trait-shifts observed throughout natural populations of Astroides calycularis, an azooxanthellate scleractinian coral endemic to the Mediterranean. Unexpected shifts in skeletal and growth patterns were found. Colonies shifted to a skeletal phenotype characterized by encrusting morphology, smaller size, reduced coenosarc tissue, fewer polyps, and less porous and denser skeletons at low pH. Interestingly, while individual polyps calcified more and extended faster at low pH, whole colonies found at low pH site calcified and extended their skeleton at the same rate as did those at ambient pH sites. Transcriptomic data revealed strong genetic differentiation among local populations of this wa...
2020
acclimatization/adaptation mechanisms; calcification; corals; environmental variability; natural CO; 2; vents; ocean acidification;
File in questo prodotto:
File Dimensione Formato  
Global Change Biology - 2020 - Teixidó - Ocean acidification causes variable trait‐shifts in a coral species.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Altro
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri
main.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/3042
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
social impact