The quality of the upgraded version of the Copernicus Marine Environment Monitoring Service (CMEMS) biogeochemical operational system of the Mediterranean Sea (MedBFM) is assessed in terms of consistency and forecast skill, following a mixed validation protocol that exploits different reference data from satellite, oceanographic databases, Biogeochemical Argo floats, and literature. We show that the quality of the MedBFM system has been improved in the previous 10 years. We demonstrate that a set of metrics based on the GODAE (Global Ocean Data Assimilation Experiment) paradigm can be efficiently applied to validate an operational model system for biogeochemical and ecosystem forecasts. The accuracy of the CMEMS biogeochemical products for the Mediterranean Sea can be achieved from basin-wide and seasonal scales to mesoscale and weekly scales, and its level depends on the specific variable and the availability of reference data, the latter being an important prerequisite to build robust statistics. In particular, the use of the Biogeochemical Argo floats data proved to significantly enhance the validation framework of operational biogeochemical models. New skill metrics, aimed to assess key biogeochemical processes and dynamics (e.g. deep chlorophyll maximum depth, nitracline depth), can be easily implemented to routinely monitor the quality of the products and highlight possible anomalies through the comparison of near-real-time (NRT) forecasts skill with pre-operationally defined seasonal benchmarks. Feedbacks to the observing autonomous systems in terms of quality control and deployment strategy are also discussed.

The quality of the upgraded version of the Copernicus Marine Environment Monitoring Service (CMEMS) biogeochemical operational system of the Mediterranean Sea (MedBFM) is assessed in terms of consistency and forecast skill, following a mixed validation protocol that exploits different reference data from satellite, oceanographic databases, Biogeochemical Argo floats, and literature. We show that the quality of the MedBFM system has been improved in the previous 10 years. We demonstrate that a set of metrics based on the GODAE (Global Ocean Data Assimilation Experiment) paradigm can be efficiently applied to validate an operational model system for biogeochemical and ecosystem forecasts. The accuracy of the CMEMS biogeochemical products for the Mediterranean Sea can be achieved from basin-wide and seasonal scales to mesoscale and weekly scales, and its level depends on the specific variable and the availability of reference data, the latter being an important prerequisite to build robust statistics. In particular, the use of the Biogeochemical Argo floats data proved to significantly enhance the validation framework of operational biogeochemical models. New skill metrics, aimed to assess key biogeochemical processes and dynamics (e.g. deep chlorophyll maximum depth, nitracline depth), can be easily implemented to routinely monitor the quality of the products and highlight possible anomalies through the comparison of near-real-time (NRT) forecasts skill with pre-operationally defined seasonal benchmarks. Feedbacks to the observing autonomous systems in terms of quality control and deployment strategy are also discussed.

Abstract. The quality of the upgraded version of the Copernicus Marine Environment Monitoring Service (CMEMS) biogeochemical operational system of the Mediterranean Sea (MedBFM) is assessed in terms of consistency and forecast skill, following a mixed validation protocol that exploits different reference data from satellite, oceanographic databases, Biogeochemical Argo floats, and literature. We show that the quality of the MedBFM system has been improved in the previous 10 years. We demonstrate that a set of metrics based on the GODAE (Global Ocean Data Assimilation Experiment) paradigm can be efficiently applied to validate an operational model system for biogeochemical and ecosystem forecasts. The accuracy of the CMEMS biogeochemical products for the Mediterranean Sea can be achieved from basin-wide and seasonal scales to mesoscale and weekly scales, and its level depends on the specific variable and the availability of reference data, the latter being an important prerequisite to build robust statistics. In particular, the use of the Biogeochemical Argo floats data proved to significantly enhance the validation framework of operational biogeochemical models. New skill metrics, aimed to assess key biogeochemical processes and dynamics (e.g. deep chlorophyll maximum depth, nitracline depth), can be easily implemented to routinely monitor the quality of the products and highlight possible anomalies through the comparison of near-real-time (NRT) forecasts skill with pre-operationally defined seasonal benchmarks. Feedbacks to the observing autonomous systems in terms of quality control and deployment strategy are also discussed.

Novel metrics based on Biogeochemical Argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem forecasts

Salon S.;Cossarini G.;Bolzon G.;Feudale L.;Lazzari P.;Teruzzi A.;Solidoro C.;
2019-01-01

Abstract

The quality of the upgraded version of the Copernicus Marine Environment Monitoring Service (CMEMS) biogeochemical operational system of the Mediterranean Sea (MedBFM) is assessed in terms of consistency and forecast skill, following a mixed validation protocol that exploits different reference data from satellite, oceanographic databases, Biogeochemical Argo floats, and literature. We show that the quality of the MedBFM system has been improved in the previous 10 years. We demonstrate that a set of metrics based on the GODAE (Global Ocean Data Assimilation Experiment) paradigm can be efficiently applied to validate an operational model system for biogeochemical and ecosystem forecasts. The accuracy of the CMEMS biogeochemical products for the Mediterranean Sea can be achieved from basin-wide and seasonal scales to mesoscale and weekly scales, and its level depends on the specific variable and the availability of reference data, the latter being an important prerequisite to build robust statistics. In particular, the use of the Biogeochemical Argo floats data proved to significantly enhance the validation framework of operational biogeochemical models. New skill metrics, aimed to assess key biogeochemical processes and dynamics (e.g. deep chlorophyll maximum depth, nitracline depth), can be easily implemented to routinely monitor the quality of the products and highlight possible anomalies through the comparison of near-real-time (NRT) forecasts skill with pre-operationally defined seasonal benchmarks. Feedbacks to the observing autonomous systems in terms of quality control and deployment strategy are also discussed.
2019
The quality of the upgraded version of the Copernicus Marine Environment Monitoring Service (CMEMS) biogeochemical operational system of the Mediterranean Sea (MedBFM) is assessed in terms of consistency and forecast skill, following a mixed validation protocol that exploits different reference data from satellite, oceanographic databases, Biogeochemical Argo floats, and literature. We show that the quality of the MedBFM system has been improved in the previous 10 years. We demonstrate that a set of metrics based on the GODAE (Global Ocean Data Assimilation Experiment) paradigm can be efficiently applied to validate an operational model system for biogeochemical and ecosystem forecasts. The accuracy of the CMEMS biogeochemical products for the Mediterranean Sea can be achieved from basin-wide and seasonal scales to mesoscale and weekly scales, and its level depends on the specific variable and the availability of reference data, the latter being an important prerequisite to build robust statistics. In particular, the use of the Biogeochemical Argo floats data proved to significantly enhance the validation framework of operational biogeochemical models. New skill metrics, aimed to assess key biogeochemical processes and dynamics (e.g. deep chlorophyll maximum depth, nitracline depth), can be easily implemented to routinely monitor the quality of the products and highlight possible anomalies through the comparison of near-real-time (NRT) forecasts skill with pre-operationally defined seasonal benchmarks. Feedbacks to the observing autonomous systems in terms of quality control and deployment strategy are also discussed.
Abstract. The quality of the upgraded version of the Copernicus Marine Environment Monitoring Service (CMEMS) biogeochemical operational system of the Mediterranean Sea (MedBFM) is assessed in terms of consistency and forecast skill, following a mixed validation protocol that exploits different reference data from satellite, oceanographic databases, Biogeochemical Argo floats, and literature. We show that the quality of the MedBFM system has been improved in the previous 10 years. We demonstrate that a set of metrics based on the GODAE (Global Ocean Data Assimilation Experiment) paradigm can be efficiently applied to validate an operational model system for biogeochemical and ecosystem forecasts. The accuracy of the CMEMS biogeochemical products for the Mediterranean Sea can be achieved from basin-wide and seasonal scales to mesoscale and weekly scales, and its level depends on the specific variable and the availability of reference data, the latter being an important prerequisite to build robust statistics. In particular, the use of the Biogeochemical Argo floats data proved to significantly enhance the validation framework of operational biogeochemical models. New skill metrics, aimed to assess key biogeochemical processes and dynamics (e.g. deep chlorophyll maximum depth, nitracline depth), can be easily implemented to routinely monitor the quality of the products and highlight possible anomalies through the comparison of near-real-time (NRT) forecasts skill with pre-operationally defined seasonal benchmarks. Feedbacks to the observing autonomous systems in terms of quality control and deployment strategy are also discussed.
Argo data; Copernicus
File in questo prodotto:
File Dimensione Formato  
SalonNovel2019.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 4.18 MB
Formato Adobe PDF
4.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/308
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact