This is the first projection of marine circulation and biogeochemistry for the Ascension Island Marine Protected Area (AIMPA). Marine Protected Areas are a key management tool used to safeguard biodiversity, but their efficacy is increasingly threatened by climate change. To assess an MPA's vulnerability to climate change and predict biological responses, we must first project how the local marine environment will change. We present the projections of an ensemble from the Sixth Coupled Model Intercomparision Project. Relative to the recent past (2000–2010), the multi-model means of the mid-century (2040–2050) project that the AIMPA will become warmer (+0.9 to +1.2°C), more saline (+0.01 to +0.10), with a shallower mixed layer depth (−1.3 to −0.8 m), a weaker Atlantic Equatorial Undercurrent (AEU) (−1.5 to −0.4 Sv), more acidic (−0.10 to −0.07), with lower surface nutrient concentrations (−0.023 to −0.0141 mmol N m−3 and −0.013 to −0.009 mmol P m−3), less chlorophyll (−6 to −3 µg m−3) a...

Impacts of Climate Change on the Ascension Island Marine Protected Area and Its Ecosystem Services

Galli G.;
2024-01-01

Abstract

This is the first projection of marine circulation and biogeochemistry for the Ascension Island Marine Protected Area (AIMPA). Marine Protected Areas are a key management tool used to safeguard biodiversity, but their efficacy is increasingly threatened by climate change. To assess an MPA's vulnerability to climate change and predict biological responses, we must first project how the local marine environment will change. We present the projections of an ensemble from the Sixth Coupled Model Intercomparision Project. Relative to the recent past (2000–2010), the multi-model means of the mid-century (2040–2050) project that the AIMPA will become warmer (+0.9 to +1.2°C), more saline (+0.01 to +0.10), with a shallower mixed layer depth (−1.3 to −0.8 m), a weaker Atlantic Equatorial Undercurrent (AEU) (−1.5 to −0.4 Sv), more acidic (−0.10 to −0.07), with lower surface nutrient concentrations (−0.023 to −0.0141 mmol N m−3 and −0.013 to −0.009 mmol P m−3), less chlorophyll (−6 to −3 µg m−3) a...
2024
Ascension Island; climate change; CMIP6; ecosystem services; ESMValTool; marine protected area;
File in questo prodotto:
File Dimensione Formato  
JGR Biogeosciences - 2024 - Mora - Impacts of Climate Change on the Ascension Island Marine Protected Area and Its.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 4.65 MB
Formato Adobe PDF
4.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/31223
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact