Biological systems are unique matter with very complex morphology and highly heterogeneous chemical composition dominated by light elements. Discriminating qualitatively at the sub-micrometer level the lateral distribution of constituent elements, and correlating it to the sub-cellular biological structure, continues to be a challenge. The low-energy X-ray fluorescence microspectroscopy, recently implemented in TwinMic scanning transmission mode, has opened up new opportunities for mapping the distribution of the light elements, complemented by morphology information provided by simultaneous acquisition of absorption and phase contrast images. The important new information that can be obtained in bio-related research domains is demonstrated by two pilot experiments with specimens of interest for marine biology and food science. They demonstrate the potential to yield important insights into the structural and compositional enrichment, distribution and correlation of essential trace elements in the lorica of Tintinnopsis radix, and the lateral distribution of trace nutrients in the seeds of wheat Triticum aestivum.

Low-energy X-ray fluorescence microscopy opening new opportunities for bio-related research

Beran A.;
2009-01-01

Abstract

Biological systems are unique matter with very complex morphology and highly heterogeneous chemical composition dominated by light elements. Discriminating qualitatively at the sub-micrometer level the lateral distribution of constituent elements, and correlating it to the sub-cellular biological structure, continues to be a challenge. The low-energy X-ray fluorescence microspectroscopy, recently implemented in TwinMic scanning transmission mode, has opened up new opportunities for mapping the distribution of the light elements, complemented by morphology information provided by simultaneous acquisition of absorption and phase contrast images. The important new information that can be obtained in bio-related research domains is demonstrated by two pilot experiments with specimens of interest for marine biology and food science. They demonstrate the potential to yield important insights into the structural and compositional enrichment, distribution and correlation of essential trace elements in the lorica of Tintinnopsis radix, and the lateral distribution of trace nutrients in the seeds of wheat Triticum aestivum.
2009
X-ray spectromicroscopy; X-ray fluorescence; marine biology; synchrotron radiation
File in questo prodotto:
File Dimensione Formato  
JRSocInterface2009.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 720.5 kB
Formato Adobe PDF
720.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/3229
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 63
social impact