: Inversion models, in the context of oceanography, relate the observed ocean color to the concentrations of the different biogeochemical components present in the water of the ocean. However, building accurate inversion models can be quite complex due to the many factors that can influence the observed ocean color, such as variations in the composition or the optical properties of biogeochemical products. Here we assess the feasibility of the inversion approach, by implementing the three-stream light inversion model in a one-dimensional water column configuration, represented at the BOUSSOLE site in the northwestern Mediterranean Sea. Moreover, we provide a comprehensive sensitivity analysis of the model's skill by perturbing the parameters of the bio-optical properties and phytoplankton physiology. Analysis of the inversion indicates that the model is able to reconstruct the variability of the optical constituents. Results indicate that chlorophyll-a and coloured dissolved organic matter play a major role in light modulation. The sensitivity analysis shows that the parameterization of the ratio of chlorophyll-a to carbon is important for the performance of the inversion model. A coherent inversion model, as presented, can be used as an observational operator to assimilate remote sensing reflectance.

Determination of biogeochemical properties in sea waters using the inversion of the three-stream irradiance model

Lazzari P.
Conceptualization
;
Gharbi Dit Kacem M.;
2024-01-01

Abstract

: Inversion models, in the context of oceanography, relate the observed ocean color to the concentrations of the different biogeochemical components present in the water of the ocean. However, building accurate inversion models can be quite complex due to the many factors that can influence the observed ocean color, such as variations in the composition or the optical properties of biogeochemical products. Here we assess the feasibility of the inversion approach, by implementing the three-stream light inversion model in a one-dimensional water column configuration, represented at the BOUSSOLE site in the northwestern Mediterranean Sea. Moreover, we provide a comprehensive sensitivity analysis of the model's skill by perturbing the parameters of the bio-optical properties and phytoplankton physiology. Analysis of the inversion indicates that the model is able to reconstruct the variability of the optical constituents. Results indicate that chlorophyll-a and coloured dissolved organic matter play a major role in light modulation. The sensitivity analysis shows that the parameterization of the ratio of chlorophyll-a to carbon is important for the performance of the inversion model. A coherent inversion model, as presented, can be used as an observational operator to assimilate remote sensing reflectance.
File in questo prodotto:
File Dimensione Formato  
s41598-024-71457-5.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 3.08 MB
Formato Adobe PDF
3.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/38103
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact