Effective observation of the ocean is vital for studying and assessing the state and evolution of the marine ecosystem and for evaluating the impact of human activities. However, obtaining comprehensive oceanic measurements across temporal and spatial scales and for different biogeochemical variables remains challenging. Autonomous oceanographic instruments, such as Biogeochemical (BGC)-Argo profiling floats, have helped expand our ability to obtain subsurface and deep-ocean measurements, but measuring biogeochemical variables, such as nutrient concentration, still remains more demanding and expensive than measuring physical variables. Therefore, developing methods to estimate marine biogeochemical variables from high-frequency measurements is very much needed. Current neural network (NN) models developed for this task are based on a multilayer perceptron (MLP) architecture, trained over point-wise pairs of input-output features. Although MLPs can produce smooth outputs if the inputs c...

PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks

Cossarini G.
2024-01-01

Abstract

Effective observation of the ocean is vital for studying and assessing the state and evolution of the marine ecosystem and for evaluating the impact of human activities. However, obtaining comprehensive oceanic measurements across temporal and spatial scales and for different biogeochemical variables remains challenging. Autonomous oceanographic instruments, such as Biogeochemical (BGC)-Argo profiling floats, have helped expand our ability to obtain subsurface and deep-ocean measurements, but measuring biogeochemical variables, such as nutrient concentration, still remains more demanding and expensive than measuring physical variables. Therefore, developing methods to estimate marine biogeochemical variables from high-frequency measurements is very much needed. Current neural network (NN) models developed for this task are based on a multilayer perceptron (MLP) architecture, trained over point-wise pairs of input-output features. Although MLPs can produce smooth outputs if the inputs c...
File in questo prodotto:
File Dimensione Formato  
Pietropolli_etal2024_PPCON.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.11 MB
Formato Adobe PDF
6.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/38223
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact