A critical driver of the ocean carbon cycle is the downward flux of sinking organic particles, which acts to lower the atmospheric carbon dioxide concentration. This downward flux is reduced by more than 70% in the mesopelagic zone (100 to 1000 meters of depth), but this loss cannot be fully accounted for by current measurements. For decades, it has been hypothesized that the missing loss could be explained by the fragmentation of large aggregates into small particles, although data to test this hypothesis have been lacking. In this work, using robotic observations, we quantified total mesopelagic fragmentation during 34 high-flux events across multiple ocean regions and found that fragmentation accounted for 49 +/- 22% of the observed flux loss. Therefore, fragmentation may be the primary process controlling the sequestration of sinking organic carbon.

Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans

Dall'Olmo G.;
2020-01-01

Abstract

A critical driver of the ocean carbon cycle is the downward flux of sinking organic particles, which acts to lower the atmospheric carbon dioxide concentration. This downward flux is reduced by more than 70% in the mesopelagic zone (100 to 1000 meters of depth), but this loss cannot be fully accounted for by current measurements. For decades, it has been hypothesized that the missing loss could be explained by the fragmentation of large aggregates into small particles, although data to test this hypothesis have been lacking. In this work, using robotic observations, we quantified total mesopelagic fragmentation during 34 high-flux events across multiple ocean regions and found that fragmentation accounted for 49 +/- 22% of the observed flux loss. Therefore, fragmentation may be the primary process controlling the sequestration of sinking organic carbon.
File in questo prodotto:
File Dimensione Formato  
Fragmentation_combined_text_R1_V5_with_figures_accepted.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.99 MB
Formato Adobe PDF
3.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/39363
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 148
  • ???jsp.display-item.citation.isi??? 144
social impact