The coastal northern Adriatic Sea receives pulsed inputs of riverine nutrients, causing phytoplankton blooms and seasonally sustained dissolved organic carbon (DOC) accumulation-hypothesized to cause episodes of massive mucilage. The underlying mechanisms regulating P and C cycles and their coupling are unclear. Extensive biogeochemical parameters, processes and community composition were measured in a 64-day mesocosms deployed off Piran, Slovenia. We followed the temporal trends of C and P fluxes in P-enriched (P+) and unenriched (P-) mesocosms. An intense diatom bloom developed then crashed; however, substantial primary production was maintained throughout, supported by tightly coupled P regeneration by bacteria and phytoplankton. Results provide novel insights on post-bloom C and P dynamics and mechanisms. 1) Post-bloom DOC accumulation to 186μM remained elevated despite high bacterial carbon demand. Presumably, a large part of DOC accumulated due to the bacterial ectohydrolytic pro...

Microbial mechanisms coupling carbon and phosphorus cycles in phosphorus-limited northern Adriatic Sea

Malfatti F.;Antonioli M.;Del Negro P.;Cataletto B.;
2014-01-01

Abstract

The coastal northern Adriatic Sea receives pulsed inputs of riverine nutrients, causing phytoplankton blooms and seasonally sustained dissolved organic carbon (DOC) accumulation-hypothesized to cause episodes of massive mucilage. The underlying mechanisms regulating P and C cycles and their coupling are unclear. Extensive biogeochemical parameters, processes and community composition were measured in a 64-day mesocosms deployed off Piran, Slovenia. We followed the temporal trends of C and P fluxes in P-enriched (P+) and unenriched (P-) mesocosms. An intense diatom bloom developed then crashed; however, substantial primary production was maintained throughout, supported by tightly coupled P regeneration by bacteria and phytoplankton. Results provide novel insights on post-bloom C and P dynamics and mechanisms. 1) Post-bloom DOC accumulation to 186μM remained elevated despite high bacterial carbon demand. Presumably, a large part of DOC accumulated due to the bacterial ectohydrolytic pro...
2014
Bacterial alkaline phosphatase; DOC accumulation; ELF-enzyme; Hydrolyses; Laser Scanning Confocal Microscope; Marine carbon biogeochemistry;
File in questo prodotto:
File Dimensione Formato  
2014_Malfatti et al_stoten (1).pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/4092
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact