The complex seismic responses of heterogeneous reservoirs can be related to the fabric structure, pore/microcrack shape, mineral composition and fluid distribution of the rock in situ. The pore structure refers to the geometric shape, size, spatial distribution and interconnectedness of pores, microcracks and throats. It is closely related to the storage space of reservoirs and the spatial distribution of oil/gas. Understanding the pore structure is crucial for the development of processes to increase oil/gas production capacity. Six dolomite samples from the Gaoshiti-Moxi Longwangmiao Formation are sorted out for measurements, and the ultrasonic and seismic attenuation are determined by using the spectral ratio method and the enhanced frequency shift method, respectively. When predicting the pore structure, we assume that the aspect ratio and volume fraction of pores and microcracks correspond to a normal distribution. On this basis, a model with the Voigt–Reuss–Hill average (VRH), di...

Estimation of Pore Structure for Heterogeneous Reservoirs Based on the Theory of Differential Poroelasticity

Carcione J. M.;
2024-01-01

Abstract

The complex seismic responses of heterogeneous reservoirs can be related to the fabric structure, pore/microcrack shape, mineral composition and fluid distribution of the rock in situ. The pore structure refers to the geometric shape, size, spatial distribution and interconnectedness of pores, microcracks and throats. It is closely related to the storage space of reservoirs and the spatial distribution of oil/gas. Understanding the pore structure is crucial for the development of processes to increase oil/gas production capacity. Six dolomite samples from the Gaoshiti-Moxi Longwangmiao Formation are sorted out for measurements, and the ultrasonic and seismic attenuation are determined by using the spectral ratio method and the enhanced frequency shift method, respectively. When predicting the pore structure, we assume that the aspect ratio and volume fraction of pores and microcracks correspond to a normal distribution. On this basis, a model with the Voigt–Reuss–Hill average (VRH), di...
2024
attenuation; Dolomite reservoir; infinituple-porosity media theory; pore structure estimation; rock-physics template;
attenuation; Dolomite reservoir; infinituple-porosity media theory; pore structure estimation; rock-physics template
File in questo prodotto:
File Dimensione Formato  
Estimation-of-Pore-Structure-for-Heterogeneous-Reservoirs-Based-on-the-Theory-of-Differential-PoroelasticityPure-and-Applied-Geophysics.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 4.38 MB
Formato Adobe PDF
4.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/42264
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact