In this work, we present the results of processing and interpretation of part of crustal seismic profile MS-24, acquired about 30 years ago. This line is oriented NW-SE and crosses the external front of the Calabrian Arc. In order to better image the complex features that characterize this margin, we applied an advanced seismic processing aiming at defining an accurate velocity field by using iteratively the pre-stack depth migration and theoretical considerations. The reprocessed data give more information about a high amplitude reflector associated to velocity inversion. New re-processed seismic data highlighted the presence of morphological features possibly related to fluid migration, which could explain the relationship between velocity inversion and free gas presence.

n this work, we present the results of processing and interpretation of part of crustal seismic profile MS-24, acquired about 30 years ago. This line is oriented NW-SE and crosses the external front of the Calabrian Arc. In order to better image the complex features that characterize this margin, we applied an advanced seismic processing aiming at defining an accurate velocity field by using iteratively the pre-stack depth migration and theoretical considerations. The reprocessed data give more information about a high amplitude reflector associated to velocity inversion. New re-processed seismic data highlighted the presence of morphological features possibly related to fluid migration, which could explain the relationship between velocity inversion and free gas presence

New Geophysical Evidences of Fluid Related Features in the Western Ionian Sea - Part I: Advanced processing of old data

Giustiniani M;Tinivella U;Volpi V;Accettella D
2011

Abstract

n this work, we present the results of processing and interpretation of part of crustal seismic profile MS-24, acquired about 30 years ago. This line is oriented NW-SE and crosses the external front of the Calabrian Arc. In order to better image the complex features that characterize this margin, we applied an advanced seismic processing aiming at defining an accurate velocity field by using iteratively the pre-stack depth migration and theoretical considerations. The reprocessed data give more information about a high amplitude reflector associated to velocity inversion. New re-processed seismic data highlighted the presence of morphological features possibly related to fluid migration, which could explain the relationship between velocity inversion and free gas presence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.14083/4522
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact