The understanding of the role of the pteropods Limacina helicina in the ecosystem has become of greater interest as the debate on ocean acidification and its consequences for calcifying organisms has increased. Four incubation experiments were carried out in January and February 2006 in Terra Nova Bay Polynya (Ross Sea) to identify the faecal pellets (FPs) produced by L. helicina. Mean FP production rates were 6.1+ 1.3 and 10.9+2.1 pellets day21 individual21 in January and February, respectively. FPs produced by L. helicina had an oval shape with a more lengthened side. The identification of L. helicina faeces allowed us to quantify the amounts of L. helicina FPs in the material collected by sediment traps deployed in the same area from 1998 to 2001. We found that L. helicina FPs flux ranged from 71 103 FP m22 year21 to 362 103 FP m22 year21 and reach maximum values in March–April every year. The FPs flux of this organism contributed 19% of the particle organic carbon flux. The carbon pump may be modified if the L. helicina population declines as a consequence of the predicted acidification in polar and subpolar waters.
Importance of the contribution of limacina helicina faecal pellets to the carbon pump in terra nova bay (Antarctica)
Manno C.;Tirelli V.;
2010-01-01
Abstract
The understanding of the role of the pteropods Limacina helicina in the ecosystem has become of greater interest as the debate on ocean acidification and its consequences for calcifying organisms has increased. Four incubation experiments were carried out in January and February 2006 in Terra Nova Bay Polynya (Ross Sea) to identify the faecal pellets (FPs) produced by L. helicina. Mean FP production rates were 6.1+ 1.3 and 10.9+2.1 pellets day21 individual21 in January and February, respectively. FPs produced by L. helicina had an oval shape with a more lengthened side. The identification of L. helicina faeces allowed us to quantify the amounts of L. helicina FPs in the material collected by sediment traps deployed in the same area from 1998 to 2001. We found that L. helicina FPs flux ranged from 71 103 FP m22 year21 to 362 103 FP m22 year21 and reach maximum values in March–April every year. The FPs flux of this organism contributed 19% of the particle organic carbon flux. The carbon pump may be modified if the L. helicina population declines as a consequence of the predicted acidification in polar and subpolar waters.File | Dimensione | Formato | |
---|---|---|---|
Mannoetal.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non specificato
Dimensione
179.79 kB
Formato
Adobe PDF
|
179.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.