Travel-time inversion is applied to seismic data to produce acoustic velocity images of the upper 800 m of the South Shetland margin (Antarctic Peninsula) in three different geological domains: (i) the continental shelf; (ii) the accretionary prism; (iii) the trench. The velocity in the continental shelf sediments is remarkably higher, up to 1000 m/s at 600700 m below seafloor, than that of the other two geological domains, due to the sediment overcompaction and erosion induced by the wax and waning of a grounded ice sheet. Pre-stack depth migration was applied to the data in order to improve the seismic image and to test the quality of the velocity fields. Where the Bottom Simulating Reflector (BSR) is present, positive and negative velocity anomalies were found with respect to a reference empirical velocity profile. The 2D-velocity section was translated in gas hydrate and free gas distribution by using a theoretical approach. The analysis revealed that the BSR is mainly related to the presence of free gas below it. The free gas is distributed in the area with variable concentration and thickness, while the gas hydrate is quite uniformly distributed across the margin.
Gas hydrate and free gas distribution from inversion of seismic data on the South Shetland margin (Antarctica)
Tinivella U.;Accaino F.;Camerlenghi A.
2002-01-01
Abstract
Travel-time inversion is applied to seismic data to produce acoustic velocity images of the upper 800 m of the South Shetland margin (Antarctic Peninsula) in three different geological domains: (i) the continental shelf; (ii) the accretionary prism; (iii) the trench. The velocity in the continental shelf sediments is remarkably higher, up to 1000 m/s at 600700 m below seafloor, than that of the other two geological domains, due to the sediment overcompaction and erosion induced by the wax and waning of a grounded ice sheet. Pre-stack depth migration was applied to the data in order to improve the seismic image and to test the quality of the velocity fields. Where the Bottom Simulating Reflector (BSR) is present, positive and negative velocity anomalies were found with respect to a reference empirical velocity profile. The 2D-velocity section was translated in gas hydrate and free gas distribution by using a theoretical approach. The analysis revealed that the BSR is mainly related to the presence of free gas below it. The free gas is distributed in the area with variable concentration and thickness, while the gas hydrate is quite uniformly distributed across the margin.File | Dimensione | Formato | |
---|---|---|---|
Tinivella_al_MGR.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
760.5 kB
Formato
Adobe PDF
|
760.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.