The sequence-stratigraphic investigation by Very High-Resolution (VHR) seismic profiles allowed recognition of the detailed architecture of the late Pleistocene and Holocene succession of the Venice area. In this way deposits previously known by the analyses of scattered cores, mainly taken along the lagoon margin and the littoral strips, have been correlated at regional scale including the near offshore sector and the result has pointed out the lateral variability of the stratal architecture. Late Pleistocene deposits consist of an aggrading floodplain and fluvial channel fills accumulated during decreasing eustatic sea level, and they are coeval with offlapping forced regressive marine wedges in the Central Adriatic basin. The Holocene sequence is composed of three main seismic units separated by major stratal surfaces. Unit 1 (up to 9 m thick) is formed by channelized deposits separated by areas showing sub-horizontal and hummocky reflectors, and is bounded at the base by a surface that records prolonged conditions of subaerial exposure and at the top by a flatter surface resulting from erosion by marine processes. Deposits of Unit 1 are interpreted as estuarine and distributary channel fills, and back-barrier strata. Unit 2 is well distinguishable from Unit 1 only in the offshore area and at the barrier island bounding the Venice Lagoon, and is composed of a prograding marine wedge (up to 10 m thick) that interacts laterally with ebb tidal deltas. Unit 3 consists of a tidal channel complex and inlet deposits, which testify the evolution of the lagoon area. Tidal channels are entrenched in the lagoon mud flat (coeval with Units 1-2) and cut the Pleistocene-Holocene boundary in several places. Following current sequence-stratigraphic concepts, the Holocene sequence is composed of a paralic transgressive systems tract (TST) (Unit 1) overlying a sequence boundary (the Pleistocene-Holocene boundary) and overlain by a marine highstand systems tract (HST) (Unit 2) in seaward locations and by highstand lagoonal deposits landwards. TST and HST are separated by a downlap surface that is amalgamated with a wave ravinement surface in several places. Unit 3 is coeval with the upper part of Unit 2, and its development has been favoured by human interventions, which led to a transgression limited to the lagoon area. Local factors during the deposition, i.e. subsidence, sediment supply, physiography, and current/wave regimes, led to a significant lateral variability in the architecture of the Holocene sequence, as evidenced by the extreme thickness variation of the TST along both depositional strike and dip. The HST, instead, shows less pronounced strike variations in the stratal architecture. Also, present data clearly evidence that the human impact has a great relevance in influencing the late Holocene sedimentation.

Sequence stratigraphy based on high-resolution seismic profiles in the late Pleistocene and Holocene deposits of the Venice area

Zecchin M.;Baradello L.;Donda F.;
2008-01-01

Abstract

The sequence-stratigraphic investigation by Very High-Resolution (VHR) seismic profiles allowed recognition of the detailed architecture of the late Pleistocene and Holocene succession of the Venice area. In this way deposits previously known by the analyses of scattered cores, mainly taken along the lagoon margin and the littoral strips, have been correlated at regional scale including the near offshore sector and the result has pointed out the lateral variability of the stratal architecture. Late Pleistocene deposits consist of an aggrading floodplain and fluvial channel fills accumulated during decreasing eustatic sea level, and they are coeval with offlapping forced regressive marine wedges in the Central Adriatic basin. The Holocene sequence is composed of three main seismic units separated by major stratal surfaces. Unit 1 (up to 9 m thick) is formed by channelized deposits separated by areas showing sub-horizontal and hummocky reflectors, and is bounded at the base by a surface that records prolonged conditions of subaerial exposure and at the top by a flatter surface resulting from erosion by marine processes. Deposits of Unit 1 are interpreted as estuarine and distributary channel fills, and back-barrier strata. Unit 2 is well distinguishable from Unit 1 only in the offshore area and at the barrier island bounding the Venice Lagoon, and is composed of a prograding marine wedge (up to 10 m thick) that interacts laterally with ebb tidal deltas. Unit 3 consists of a tidal channel complex and inlet deposits, which testify the evolution of the lagoon area. Tidal channels are entrenched in the lagoon mud flat (coeval with Units 1-2) and cut the Pleistocene-Holocene boundary in several places. Following current sequence-stratigraphic concepts, the Holocene sequence is composed of a paralic transgressive systems tract (TST) (Unit 1) overlying a sequence boundary (the Pleistocene-Holocene boundary) and overlain by a marine highstand systems tract (HST) (Unit 2) in seaward locations and by highstand lagoonal deposits landwards. TST and HST are separated by a downlap surface that is amalgamated with a wave ravinement surface in several places. Unit 3 is coeval with the upper part of Unit 2, and its development has been favoured by human interventions, which led to a transgression limited to the lagoon area. Local factors during the deposition, i.e. subsidence, sediment supply, physiography, and current/wave regimes, led to a significant lateral variability in the architecture of the Holocene sequence, as evidenced by the extreme thickness variation of the TST along both depositional strike and dip. The HST, instead, shows less pronounced strike variations in the stratal architecture. Also, present data clearly evidence that the human impact has a great relevance in influencing the late Holocene sedimentation.
File in questo prodotto:
File Dimensione Formato  
Zecchin et al 2008 MarGeo.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 3.85 MB
Formato Adobe PDF
3.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/589
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 93
social impact