The Maltese Islands, located in the central Mediterranean Sea, are intersected by two normal fault systems associated with continental rifting to the south. Due to a lack of evidence for offshore displacement and insignificant historical seismicity, the systems are thought to be inactive and the rift-related deformation is believed to have ceased. In this study we integrate aerial, marine and onshore geological, geophysical and geochemical data from the Maltese Islands to demonstrate that the majority of faults offshore the archipelago underwent extensional to transtensional deformation during the last 20 ka. We also document an active fluid flow system responsible for degassing of CH4 and CO2. The gases migrate through carbonate bedrock and overlying sedimentary layers via focused pathways, such as faults and pipe structures, and possibly via diffuse pathways, such as fractures. Where the gases seep offshore, they form pockmarks and rise through the water column into the atmosphere. Gas migration and seepage implies that the onshore and offshore faults systems are permeable and that they were active recently and simultaneously. The latter can be explained by a transtensional system involving two right-stepping, right-lateral NW-SE trending faults, either binding a pull-apart basin between the islands of Malta and Gozo or associated with minor connecting antitethic structures. Such a configuration may be responsible for the generation or reactivation of faults onshore and offshore the Maltese Islands, and fits into the modern divergent strain-stress regime inferred from geodetic data.

Active degassing across the Maltese Islands (Mediterranean Sea) and implications for its neotectonics

Petronio L.;Coren F.;Facchin L.;Blanos R.;Pavan A.;Paganini P.;
2019-01-01

Abstract

The Maltese Islands, located in the central Mediterranean Sea, are intersected by two normal fault systems associated with continental rifting to the south. Due to a lack of evidence for offshore displacement and insignificant historical seismicity, the systems are thought to be inactive and the rift-related deformation is believed to have ceased. In this study we integrate aerial, marine and onshore geological, geophysical and geochemical data from the Maltese Islands to demonstrate that the majority of faults offshore the archipelago underwent extensional to transtensional deformation during the last 20 ka. We also document an active fluid flow system responsible for degassing of CH4 and CO2. The gases migrate through carbonate bedrock and overlying sedimentary layers via focused pathways, such as faults and pipe structures, and possibly via diffuse pathways, such as fractures. Where the gases seep offshore, they form pockmarks and rise through the water column into the atmosphere. Gas migration and seepage implies that the onshore and offshore faults systems are permeable and that they were active recently and simultaneously. The latter can be explained by a transtensional system involving two right-stepping, right-lateral NW-SE trending faults, either binding a pull-apart basin between the islands of Malta and Gozo or associated with minor connecting antitethic structures. Such a configuration may be responsible for the generation or reactivation of faults onshore and offshore the Maltese Islands, and fits into the modern divergent strain-stress regime inferred from geodetic data.
2019
Gas seepage; Faults; Neotectonics
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0264817219301321-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 5.24 MB
Formato Adobe PDF
5.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/1487
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact