As the ocean warms, the thermal tolerance of marine invertebrates is key to determining their distributional change, where acclimation to low pH may impact the thermal range of optimal development. We compared thermal tolerance of progeny from a low pH-acclimated sea urchin (Arbacia lixula) population from the CO2 vents of Ischia (Italy) and a nearby population living at ambient pH. The percentages of normally developing gastrulae and two-armed larvae were determined across 10 temperatures representing present and future temperature conditions (16-34 degrees C). Vent-acclimated sea urchins showed a greater percentage of normal development at 24 h, with a larger optimal developmental temperature range than control sea urchins (12.3 degrees C versus 5.4 degrees C range, respectively). At 48 h, upper lethal temperatures for 50% survival with respect to ambient temperatures were similar between control (+6.8 degrees C) and vent (+6.2 degrees C) populations. Thus, acclimation to low pH did not impact the broad thermal tolerance of A. lixula progeny. With A. lixula's barrens-forming abilities, its wide thermotolerance and its capacity to acclimate to low pH, this species will continue to be an important ecological engineer in Mediterranean macroalgal ecosystems in a changing ocean.

Acclimation to low pH does not affect the thermal tolerance of Arbacia lixula progeny

Gambi M. C.;
2022-01-01

Abstract

As the ocean warms, the thermal tolerance of marine invertebrates is key to determining their distributional change, where acclimation to low pH may impact the thermal range of optimal development. We compared thermal tolerance of progeny from a low pH-acclimated sea urchin (Arbacia lixula) population from the CO2 vents of Ischia (Italy) and a nearby population living at ambient pH. The percentages of normally developing gastrulae and two-armed larvae were determined across 10 temperatures representing present and future temperature conditions (16-34 degrees C). Vent-acclimated sea urchins showed a greater percentage of normal development at 24 h, with a larger optimal developmental temperature range than control sea urchins (12.3 degrees C versus 5.4 degrees C range, respectively). At 48 h, upper lethal temperatures for 50% survival with respect to ambient temperatures were similar between control (+6.8 degrees C) and vent (+6.2 degrees C) populations. Thus, acclimation to low pH did not impact the broad thermal tolerance of A. lixula progeny. With A. lixula's barrens-forming abilities, its wide thermotolerance and its capacity to acclimate to low pH, this species will continue to be an important ecological engineer in Mediterranean macroalgal ecosystems in a changing ocean.
2022
CO2 vents
Mediterranean Sea
climate change
echinoderm
ocean warming
thermal tolerance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/18549
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact