: Aftershocks of earthquakes can destroy many urban infrastructures and exacerbate the damage already inflicted upon weak structures. Therefore, it is important to have a method to forecast the probability of occurrence of stronger earthquakes in order to mitigate their effects. In this work, we applied the NESTORE machine learning approach to Greek seismicity from 1995 to 2022 to forecast the probability of a strong aftershock. Depending on the magnitude difference between the mainshock and the strongest aftershock, NESTORE classifies clusters into two types, Type A and Type B. Type A clusters are the most dangerous clusters, characterized by a smaller difference. The algorithm requires region-dependent training as input and evaluates performance on an independent test set. In our tests, we obtained the best results 6 h after the mainshock, as we correctly forecasted 92% of clusters corresponding to 100% of Type A clusters and more than 90% of Type B clusters. These results were also obtained thanks to an accurate analysis of cluster detection in a large part of Greece. The successful overall results show that the algorithm can be applied in this area. The approach is particularly attractive for seismic risk mitigation due to the short time required for forecasting.

Forecasting Strong Subsequent Earthquakes in Greece with the Machine Learning Algorithm NESTORE

Gentili S.
Conceptualization
;
Brondi P.
Software
;
2023-01-01

Abstract

: Aftershocks of earthquakes can destroy many urban infrastructures and exacerbate the damage already inflicted upon weak structures. Therefore, it is important to have a method to forecast the probability of occurrence of stronger earthquakes in order to mitigate their effects. In this work, we applied the NESTORE machine learning approach to Greek seismicity from 1995 to 2022 to forecast the probability of a strong aftershock. Depending on the magnitude difference between the mainshock and the strongest aftershock, NESTORE classifies clusters into two types, Type A and Type B. Type A clusters are the most dangerous clusters, characterized by a smaller difference. The algorithm requires region-dependent training as input and evaluates performance on an independent test set. In our tests, we obtained the best results 6 h after the mainshock, as we correctly forecasted 92% of clusters corresponding to 100% of Type A clusters and more than 90% of Type B clusters. These results were also obtained thanks to an accurate analysis of cluster detection in a large part of Greece. The successful overall results show that the algorithm can be applied in this area. The approach is particularly attractive for seismic risk mitigation due to the short time required for forecasting.
2023
Greek seismicity
NESTORE
aftershocks
clusters
features
forecasting
machine learning algorithm
training procedure
File in questo prodotto:
File Dimensione Formato  
Anyfadi_Gentili_Brondi_Vallianatos_entropy_2023.pdf

accesso aperto

Descrizione: Paper
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 5.18 MB
Formato Adobe PDF
5.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/19805
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact