High-resolution 2D and 3D seismic data are used to investigate the morphology, internal architecture and origin of widespread seafloor undulations in the eastern area of a submarine canyon system, northern South China Sea. The seafloor undulations reveal similar seafloor morphologies, and three different types (Types A, B and C)can be classified based on their relative locations and internal seismic characters. Types A and B are observed in the canyon areas, whereas Type C occurs in the canyon heads. Seismic reflections within Types A and C are continuous and have an upslope migrating trend, while Type B seafloor undulations are separated by listric faults. Our analysis reveals the origins of these three different types of seafloor undulations. Type A seafloor undulations are sediment waves formed by turbidity currents flowing through the submarine canyons. Gravity-driven submarine creep resulted in the formation of Type B seafloor undulations. Type C undulations are sediment waves generated by internal waves interacting with the continental slope. Our results provide information about the origin of widespread seafloor undulations in other submarine canyon systems. It is also of great significance to future risk assessments, as the study area now is one of the most active regions for hydrocarbon exploration in SE Asia.

Different origins of seafloor undulations in a submarine canyon system, northern South China Sea, based on their seismic character and relative location

Rebesco M.;
2019-01-01

Abstract

High-resolution 2D and 3D seismic data are used to investigate the morphology, internal architecture and origin of widespread seafloor undulations in the eastern area of a submarine canyon system, northern South China Sea. The seafloor undulations reveal similar seafloor morphologies, and three different types (Types A, B and C)can be classified based on their relative locations and internal seismic characters. Types A and B are observed in the canyon areas, whereas Type C occurs in the canyon heads. Seismic reflections within Types A and C are continuous and have an upslope migrating trend, while Type B seafloor undulations are separated by listric faults. Our analysis reveals the origins of these three different types of seafloor undulations. Type A seafloor undulations are sediment waves formed by turbidity currents flowing through the submarine canyons. Gravity-driven submarine creep resulted in the formation of Type B seafloor undulations. Type C undulations are sediment waves generated by internal waves interacting with the continental slope. Our results provide information about the origin of widespread seafloor undulations in other submarine canyon systems. It is also of great significance to future risk assessments, as the study area now is one of the most active regions for hydrocarbon exploration in SE Asia.
File in questo prodotto:
File Dimensione Formato  
Jian Li Undulations South China Sea_compressed.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/2106
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact