The problem of localizing small (relative to wavelength) scatterers by diffractions to enhance their use in identifying small-scale details in a seismic image is extremely important in shallow exploration to identify interesting features such as fractures, caves, and faults. The conventional approach based on seismic reflection is limited in resolution by the Rayleigh criterion. In certain acquisition geometries, such as crosswell surveys aimed at obtaining high-resolution signals, the availability of suitable data sets for effective migration depends on the spatial extent of the available source and receiver data intervals. With the aim of overcoming the resolution limits of seismic reflection, we study the detectability, response, and location of meter- and possibly submeter-dimension carbonate concretions (septaria) in the Boom Clay Formation (potential host rocks for radioactive waste disposal) by diffraction analysis of high-frequency signals. We investigate diffraction wavefields by signal separation, focusing, and high-resolution coherency analysis using the multiple signal classification method and semblance. The investigation is performed for two different surveys in Belgium, a shallow and high-resolution reverse vertical seismic profile (RVSP) and a near-offset crosswell application at Kruibeke and ON-MOL-2 sites, respectively. The data analysis is supported by synthetic wavefield modeling. The multioffset RVSP provides the appropriate geometry to observe and investigate the septaria diffractions from depth and the surface. The crosswell approach, calibrated using synthetic data in the analysis of wavefield patterns in 2D, indicates promising imaging results with field data of a selected diffraction zone in the interwell area.
Processing of seismic diffractions from carbonate nodules in clay formations
Bellezza C.;Poletto F.;Farina B.;Pinna G.;
2022-01-01
Abstract
The problem of localizing small (relative to wavelength) scatterers by diffractions to enhance their use in identifying small-scale details in a seismic image is extremely important in shallow exploration to identify interesting features such as fractures, caves, and faults. The conventional approach based on seismic reflection is limited in resolution by the Rayleigh criterion. In certain acquisition geometries, such as crosswell surveys aimed at obtaining high-resolution signals, the availability of suitable data sets for effective migration depends on the spatial extent of the available source and receiver data intervals. With the aim of overcoming the resolution limits of seismic reflection, we study the detectability, response, and location of meter- and possibly submeter-dimension carbonate concretions (septaria) in the Boom Clay Formation (potential host rocks for radioactive waste disposal) by diffraction analysis of high-frequency signals. We investigate diffraction wavefields by signal separation, focusing, and high-resolution coherency analysis using the multiple signal classification method and semblance. The investigation is performed for two different surveys in Belgium, a shallow and high-resolution reverse vertical seismic profile (RVSP) and a near-offset crosswell application at Kruibeke and ON-MOL-2 sites, respectively. The data analysis is supported by synthetic wavefield modeling. The multioffset RVSP provides the appropriate geometry to observe and investigate the septaria diffractions from depth and the surface. The crosswell approach, calibrated using synthetic data in the analysis of wavefield patterns in 2D, indicates promising imaging results with field data of a selected diffraction zone in the interwell area.File | Dimensione | Formato | |
---|---|---|---|
GEO-2020-0794_AUTHOR_2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
6.98 MB
Formato
Adobe PDF
|
6.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.