Networks of trophic interactions provide a lot of information on the functioning of marine ecosystems. Beyond feeding habits, three additional traits (mobility, size, and habitat) of various organisms can complement this trophic view. The combination of traits and food web positions are studied here on a large food web database. The aim is a better description and understanding of ecological roles of organisms and the identification of the most important keystone species. This may contribute to develop better ecological indicators (e.g., keystoneness) and help in the interpretation of food web models. We use food web data from the Ecopath with Ecosim (EwE) database for 92 aquatic ecosystems. We quantify the network position of organisms by 18 topological indices (measuring centrality, hierarchy, and redundancy) and consider their three, categorical traits (e.g., for mobility: sessile, drifter, limited mobility, and mobile). Relationships are revealed by multivariate analysis. We found that topological indices belong to six different categories and some of them nicely separate various trait categories. For example, benthic organisms are richly connected and mobile organisms occupy higher food web positions.

Who Is Where in Marine Food Webs? A Trait-Based Analysis of Network Positions

Libralato S.;
2021-01-01

Abstract

Networks of trophic interactions provide a lot of information on the functioning of marine ecosystems. Beyond feeding habits, three additional traits (mobility, size, and habitat) of various organisms can complement this trophic view. The combination of traits and food web positions are studied here on a large food web database. The aim is a better description and understanding of ecological roles of organisms and the identification of the most important keystone species. This may contribute to develop better ecological indicators (e.g., keystoneness) and help in the interpretation of food web models. We use food web data from the Ecopath with Ecosim (EwE) database for 92 aquatic ecosystems. We quantify the network position of organisms by 18 topological indices (measuring centrality, hierarchy, and redundancy) and consider their three, categorical traits (e.g., for mobility: sessile, drifter, limited mobility, and mobile). Relationships are revealed by multivariate analysis. We found that topological indices belong to six different categories and some of them nicely separate various trait categories. For example, benthic organisms are richly connected and mobile organisms occupy higher food web positions.
2021
centrality
Ecopath with Ecosim
food web
keystones
network position
traits
File in questo prodotto:
File Dimensione Formato  
Who Is Where in Marine Food Webs? A Trait-Based Analysis of Network Positions.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/26264
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact