It is an open question whether machine-learning (ML) methods can be trusted in areas where dense and localized seismic networks are in operation, and prompt and accurate detection and location of earthquakes are essential to guide decision-making processes that contribute to seismic-risk-mitigation-strategies, even for very low-magnitude events. To address these concerns, we compare the performance of a widely-used ML phase picker, PhaseNet, integrated with several popular earthquake location methods (included in LOC-FLOW), with the results obtained by the workflow adopted since 2012 by the Collalto Seismic Network, installed to monitor natural and potentially induced microearthquakes nearby an underground gas storage. The tested dataset concerns the most populated microseismic sequence observed so far (374 events, ML⩽2.5, August 2021, Refrontolo, NE-Italy), as its unusual productivity raised some criticalities in the combination of automatic routines, and time-consuming manual revision of phase picks adopted by the standard workflow. LOC-FLOW is able to detect the majority of the events listed in the manually revised catalog, demonstrating its ability to efficiently and accurately build earthquake catalogs from continuous seismic data. We highlight both the advantages and limitations of the ML-picker and recommend the use of template-matching-techniques in the final stage of processing to increase the number of events.

Machine learning versus manual earthquake location workflow: testing LOC-FLOW on an unusually productive microseismic sequence in northeastern Italy

Sugan M.
;
Peruzza L.;Romano M. A.;Guidarelli M.;Moratto L.;Sandron D.;Plasencia Linares M. P.;Romanelli M.
2023-01-01

Abstract

It is an open question whether machine-learning (ML) methods can be trusted in areas where dense and localized seismic networks are in operation, and prompt and accurate detection and location of earthquakes are essential to guide decision-making processes that contribute to seismic-risk-mitigation-strategies, even for very low-magnitude events. To address these concerns, we compare the performance of a widely-used ML phase picker, PhaseNet, integrated with several popular earthquake location methods (included in LOC-FLOW), with the results obtained by the workflow adopted since 2012 by the Collalto Seismic Network, installed to monitor natural and potentially induced microearthquakes nearby an underground gas storage. The tested dataset concerns the most populated microseismic sequence observed so far (374 events, ML⩽2.5, August 2021, Refrontolo, NE-Italy), as its unusual productivity raised some criticalities in the combination of automatic routines, and time-consuming manual revision of phase picks adopted by the standard workflow. LOC-FLOW is able to detect the majority of the events listed in the manually revised catalog, demonstrating its ability to efficiently and accurately build earthquake catalogs from continuous seismic data. We highlight both the advantages and limitations of the ML-picker and recommend the use of template-matching-techniques in the final stage of processing to increase the number of events.
2023
Collalto Seismic Network
Machine learning
microseismicity
seismic monitoring
template matching
File in questo prodotto:
File Dimensione Formato  
Machine learning versus manual earthquake location workflow testing LOC-FLOW on an unusually productive microseismic sequence in northeastern Italy.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/26623
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact