Zipf's law describes the empirical size distribution of the components of many systems in natural and social sciences and humanities. We show, by solving a statistical model, that Zipf's law co-occurs with the maximization of the diversity of the component sizes. The law ruling the increase of such diversity with the total dimension of the system is derived and its relation with Heaps's law is discussed. As an example, we show that our analytical results compare very well with linguistics and population datasets.

Maximal Diversity and Zipf's Law

Mazzarisi O.;
2021-01-01

Abstract

Zipf's law describes the empirical size distribution of the components of many systems in natural and social sciences and humanities. We show, by solving a statistical model, that Zipf's law co-occurs with the maximization of the diversity of the component sizes. The law ruling the increase of such diversity with the total dimension of the system is derived and its relation with Heaps's law is discussed. As an example, we show that our analytical results compare very well with linguistics and population datasets.
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.127.128301.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 540.97 kB
Formato Adobe PDF
540.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/32067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact