Extreme rainfall events represent one of the main triggers of landslides. As climate change continues to reshape global weather patterns, the frequency and intensity of such events are increasing, amplifying landslide occurrences and associated threats to communities. In this contribution, we analyze relationships between landslide occurrence and extreme rainfall events by using a “glass-box” machine learning model, namely Explainable Boosting Machine. What sets these models as a “glass-box” technique is their exact intelligibility, offering transparent explanations for their predictions. We leverage these capabilities to model the landslide occurrence induced by an extreme rainfall event in the form of spatial probability (i.e., susceptibility). In doing so, we use the heavy rainfall event in the Misa River Basin (Central Italy) on September 15, 2022. Notably, we introduce a rainfall anomaly among our set of predictors to express the intensity of the event compared to past rainfall patterns. Spatial variable selection and model evaluation through random and spatial routines are incorporated into our protocol. Our findings highlight the critical role of the rainfall anomaly as the most important variable in modeling landslide susceptibility. Furthermore, we leverage the dynamic nature of such a variable to estimate landslide occurrence under different rainfall scenarios.

Shifting from traditional landslide occurrence modeling to scenario estimation with a “glass-box” machine learning

Confuorto P.;Raspini F.;Casagli N.;
2024-01-01

Abstract

Extreme rainfall events represent one of the main triggers of landslides. As climate change continues to reshape global weather patterns, the frequency and intensity of such events are increasing, amplifying landslide occurrences and associated threats to communities. In this contribution, we analyze relationships between landslide occurrence and extreme rainfall events by using a “glass-box” machine learning model, namely Explainable Boosting Machine. What sets these models as a “glass-box” technique is their exact intelligibility, offering transparent explanations for their predictions. We leverage these capabilities to model the landslide occurrence induced by an extreme rainfall event in the form of spatial probability (i.e., susceptibility). In doing so, we use the heavy rainfall event in the Misa River Basin (Central Italy) on September 15, 2022. Notably, we introduce a rainfall anomaly among our set of predictors to express the intensity of the event compared to past rainfall patterns. Spatial variable selection and model evaluation through random and spatial routines are incorporated into our protocol. Our findings highlight the critical role of the rainfall anomaly as the most important variable in modeling landslide susceptibility. Furthermore, we leverage the dynamic nature of such a variable to estimate landslide occurrence under different rainfall scenarios.
2024
Landslides Machine-learning Glass-box models Landslide susceptibility EBMs Extreme rainfall events Italy
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0048969724054275-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 852.47 kB
Formato Adobe PDF
852.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/35983
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact