The European Union Marine Strategy Framework Directive (MSFD) recognises that maintaining marine food-webs in Good Environmental Status (GES) is fundamental to ensure the long-term provision of essential ecosystem goods and services. However, operationalising food-web assessments is challenging due to difficulties in i) implementing simple but complete monitoring programmes, ii) identifying thresholds in monitoring indicators that inform when perturbations are diverting food-web state from GES and iii) in providing an integrative and complete picture of the (health) status of food-webs. In this context, stability assessments of marine food-webs could be useful to identifying the indicators that best track perturbation-induced changes in food-web state and the threshold boundaries that should not be exceeded to minimise the likelihood of losing stability. Yet, there is still a lack of systematic methods to perform such assessments. Here, we evaluate the potential of a simulation-based protocol to be used as a methodological standard for assessing the stability of marine food-webs. The protocol draws on the principles of ecological stability theory and provides a framework for assessing the trajectories of individual indicators during perturbation regimes and their robustness in detecting stability thresholds for marine food-webs. We tested the protocol on an open-ocean and deep-sea food-web modelled with the Ecopath with Ecosim suite. We concluded that indicators that quantify transfer efficiency through the food-web and measure the average trophic level of the community are optimal proxies for trophic functioning and structure to assess the stability of the system. Furthermore, we show how the approach can be applied to i) determine the impact of a loss of stability on the balance between trophic levels and ii) identify the biological components of the food-web that are most affected in scenarios of stability loss. Our findings could be useful for the ongoing debate on how trophic models and derived indicators can play a concrete and practical role in the food-web assessments in European seas.

A simulation-based approach to assess the stability of marine food-webs and inform Good Environmental Status

Simone Libralato;
2024-01-01

Abstract

The European Union Marine Strategy Framework Directive (MSFD) recognises that maintaining marine food-webs in Good Environmental Status (GES) is fundamental to ensure the long-term provision of essential ecosystem goods and services. However, operationalising food-web assessments is challenging due to difficulties in i) implementing simple but complete monitoring programmes, ii) identifying thresholds in monitoring indicators that inform when perturbations are diverting food-web state from GES and iii) in providing an integrative and complete picture of the (health) status of food-webs. In this context, stability assessments of marine food-webs could be useful to identifying the indicators that best track perturbation-induced changes in food-web state and the threshold boundaries that should not be exceeded to minimise the likelihood of losing stability. Yet, there is still a lack of systematic methods to perform such assessments. Here, we evaluate the potential of a simulation-based protocol to be used as a methodological standard for assessing the stability of marine food-webs. The protocol draws on the principles of ecological stability theory and provides a framework for assessing the trajectories of individual indicators during perturbation regimes and their robustness in detecting stability thresholds for marine food-webs. We tested the protocol on an open-ocean and deep-sea food-web modelled with the Ecopath with Ecosim suite. We concluded that indicators that quantify transfer efficiency through the food-web and measure the average trophic level of the community are optimal proxies for trophic functioning and structure to assess the stability of the system. Furthermore, we show how the approach can be applied to i) determine the impact of a loss of stability on the balance between trophic levels and ii) identify the biological components of the food-web that are most affected in scenarios of stability loss. Our findings could be useful for the ongoing debate on how trophic models and derived indicators can play a concrete and practical role in the food-web assessments in European seas.
2024
MSFD - Descriptor 4Good Environmental StatusMarine food-websStability assessmentsIndicatorsThresholds
File in questo prodotto:
File Dimensione Formato  
2024 Brito et al., 2024 (ecological indicators for MSFD).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/39125
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact