We generated a mass-balance model to figure out the food web structure and trophic interactions of the major functional groups of the Ethiopian highland Lake Hayq. Moreover, the study lay down a baseline data for future ecosystem-based investigations and management activities. Extensive data collection has been taken place between October 2007 and May 2009. Ecotrophic efficiency (EE) of several functional groups including phytoplankton (0.8) and detritus (0.85) was high indicating the utilization of the groups within the system. However, the EE of Mesocyclops (0.03) and Thermocyclops (0.30) was very low implying these resources were rather a ‘sink’ in the trophic hierarchy. Flows based on aggregated trophic level sensu Lindeman revealed the importance of both phytoplankton and detritus to higher trophic levels. The computed average transfer efficiency of 11.5% for the first four trophic levels was within the range for highly efficient African lakes. The primary production to respiration (P/R) ratio (1.05) of Lake Hayq indicates the maturity of the ecosystem.Wealso modeled the food-web by excluding Tilapia and reduced phytoplankton biomass to get insight into the mass balance before Tilapia was introduced. The analysis resulted in a lower system omnivory index (SOI = 0.016) and a reduced P/R ratio (0.13) that described the lake as immature ecosystem, suggesting the introduction of Tilapia might have contributed to the maturity of the lake. Tilapia in Lake Hayq filled an ecological empty niche of pelagic planktivores, and contributed for the better transfer efficiency observed from primary production to fish yield.

Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia

Libralato S.
2011-01-01

Abstract

We generated a mass-balance model to figure out the food web structure and trophic interactions of the major functional groups of the Ethiopian highland Lake Hayq. Moreover, the study lay down a baseline data for future ecosystem-based investigations and management activities. Extensive data collection has been taken place between October 2007 and May 2009. Ecotrophic efficiency (EE) of several functional groups including phytoplankton (0.8) and detritus (0.85) was high indicating the utilization of the groups within the system. However, the EE of Mesocyclops (0.03) and Thermocyclops (0.30) was very low implying these resources were rather a ‘sink’ in the trophic hierarchy. Flows based on aggregated trophic level sensu Lindeman revealed the importance of both phytoplankton and detritus to higher trophic levels. The computed average transfer efficiency of 11.5% for the first four trophic levels was within the range for highly efficient African lakes. The primary production to respiration (P/R) ratio (1.05) of Lake Hayq indicates the maturity of the ecosystem.Wealso modeled the food-web by excluding Tilapia and reduced phytoplankton biomass to get insight into the mass balance before Tilapia was introduced. The analysis resulted in a lower system omnivory index (SOI = 0.016) and a reduced P/R ratio (0.13) that described the lake as immature ecosystem, suggesting the introduction of Tilapia might have contributed to the maturity of the lake. Tilapia in Lake Hayq filled an ecological empty niche of pelagic planktivores, and contributed for the better transfer efficiency observed from primary production to fish yield.
2011
food web; mass balance; trophic efficiency
File in questo prodotto:
File Dimensione Formato  
2011_Fetahi et al., 2011 (Lake Hayq model ethiopia).pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 771.86 kB
Formato Adobe PDF
771.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14083/4404
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 33
social impact